\qquad Hour \qquad

Work, Power, and Energy Problems- Level 2

1. Calculate the kinetic energy of a 4 kg toy car moving at $5 \mathrm{~m} / \mathrm{s}$. $(50 \mathrm{~J})$
2. If it took the 4 kg toy car from $\# 1$ above a force of 20 N to accelerate from rest to the 5 m / s, over what distance did the force act? (Find a, then $\Delta \mathrm{x}$. answer $=2.5 \mathrm{~m}$)
3. A 77 kg diver drops from a board that is 10.0 meters above the water's surface.
a. Find the speed of the diver after falling for 4 meters: ($8.85 \mathrm{~m} / \mathrm{s}$)

Before you start... what is $\Delta \mathbf{y}$? \qquad h_{i} ? \qquad h_{f} ? \qquad Conservation of energy: 1-D motion equations:
b. If it takes him 8.2 sec to climb the stairs on the way up (10 m), how much work did he do and what is his horsepower? (-7546 J, -1.23 hp)

\qquad Hour \qquad
4. A 150 gram pendulum starts at a height of 0.95 m . How much kinetic energy does it have at the bottom of its swing? (Find Vf using CE, then KE) (1.4 J)
5. Bryce $(m=68 \mathrm{~kg})$ was sledding.
a. Find his speed at the top of the second hill using CE. ($17.1 \mathrm{~m} / \mathrm{s}$)

b. If Bryce left the second hill like a horizontal projectile, how far away would he land? (17.3 m)
6. A child slides down a slide that ends 0.2 meters off the ground. Calculate how high the slide is to start if she lands 1.2 m away when she leaves like a horizontal projectile. Find time first, then $\mathbf{V}_{\mathbf{x}}$, then $\mathbf{h}_{\mathbf{i}}$. (Similar to 2d but backwards) ($\Delta t=0.202 \mathrm{sec}, \mathrm{V}_{\mathrm{x}}\left(\right.$ same as V_{f}) $=5.94 \mathrm{~m} / \mathrm{s}, h_{i}=2.0 \mathrm{~m}$)

7. a. A 75 kg skier starts at rest at the top of a 50 m hill. Find the skier's velocity at the bottom

b. If he hits a ramp and flies off at a $45^{\circ} \mathrm{N}$ of E , what will be his potential energy at his maximum height? (The $31.3 \mathrm{~m} / \mathrm{s}$ from above is your hypotenuse!) ($\approx 18,290 \mathrm{~J}$)

